SCORE

1.

2._____

3.

4.

5. _

6._____

7.

8._____

9.

Chapter 3 Test, Form 1

Write the letter for the correct answer in the blank at the right of each question.

1. A system of linear equations may not have		
A exactly one solution.	C infinitely many solutions.	
B no solution.	D exactly two solutions.	

Choose the correct description of each system of equations.

F consistent and independent	H consistent and dependent
G inconsistent	\mathbf{J} inconsistent and dependent

2. $4x - 2y = -6$	3. $3x + y = 3$
2x - y = 8	x - 2y = 4

4. Which system of equations is graphed

A $y - \frac{1}{3}x = 0$	•	$\mathbf{C} \ y - 3x = 0$
x-y=-2		x - y = 2
$\mathbf{B} y - 3x = 0$		D $y - \frac{1}{3}x = 0$
x - y = -2		x-y=2

5. Which system of inequalities is graphed?

F $y > -1$	•	H $y > -1$	
$y \ge -x+1$		$y \leq -x+1$	
$\mathbf{G} y \ge -1$		J $y > -1$	
$y \ge -x + 1$		y < -x + 1	

Use the system of inequalities $y \ge 0$, $x \ge 0$, and $y \le -2x + 4$.

6. Find the coordinates of the	vertices of the feasible region.
A (0, 0), (-2, 0), (0, -4)	C (0, 0), (4, 0), (0, 2)
B (0, 0), (2, 0), (0, 4)	D (0, 0), (-4, 0), (0, 2)

- 7. Find the minimum value of f(x, y) = 3x + y for the feasible region. **F** 6 **G** 4 **H** 2 **J** 0
- 8. Find the maximum value of f(x, y) = 3x + y for the feasible region. A 2 B 4 C 6 D 12

9. What is the value of y in the			2x + y + z = 1
solution of the system of equations?			2x - y - 3z = -3
			x - 2y - 4z = -2
F –10	G –8	H 2	J 5

10. The 300 students at Holmes School work a total of 5000 hours each month. Each student in group A works 10 hours, each in group B works 15 hours, and each in group C works 20 hours each month. There are twice as many students in group B as in group A. Which equation would *not* be included in the system used to solve this problem? $\Delta A - 2B$ C A + B + C = 300

A
$$A = 2B$$

B $10A + 15B + 20C = 5000$
C $A + B + C = 300$
D $B = 2A$

10._____

Chapter 3 Test, Form 1 (continued)

For Questions 11-15, use the matrices to find the following.

$\boldsymbol{P} = \begin{bmatrix} 4 & 1 \\ 2 & 0 \end{bmatrix} \qquad \boldsymbol{Q} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 6\\2 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} 0 & \frac{1}{2}\\1 & -2 \end{bmatrix}$	$S = \begin{bmatrix} 6 & -4 & 9 \\ 3 & -1 & -5 \end{bmatrix}$		
11. the first row of 4 <i>S</i> F [-2 8 -5]	G [12 –4 –20]	H [24 –16 36]	J not possible	11
12. the first row of 2 <i>P</i> A [8 3]	+ 2R B [4 3]	C [6 -4]	D not possible	12
13. the first row of <i>SP</i> F [12 -4 -20]	G [-23 21]	H [53 –27]	J not possible	13
14. the inverse of matri A P	ix <i>R</i> B <i>Q</i>	С Т	D not possible	14
15. the determinant of F 8	<i>Q</i> G 4	H 2	J –2	15
16. Find the value of $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 5 & 1 \\ 3 & 2 \end{bmatrix}$. B 7	C 17	D 3	16
17. Which expression if F $c(X + Y) = (Y + X)$ G $c(XY) = (YX)c$	-	$Y_{2\times 2}, Y_{2\times 2}, \text{ and scalars } c?$ = YX Y = c(X) c(Y)		17
18. Evaluate $\begin{vmatrix} 2 & 0 & 1 \\ 3 & 1 & 2 \\ 1 & -2 & 5 \end{vmatrix}$	using diagonals.			
A -2	B 7	C 11	D –1	18
19. Cramer's Rule is used to solve the system of equations $2m + 3n = 11$ and $3m - 5n = 6$. Which determinant represents the numerator for <i>m</i> ?				
$\mathbf{F} \begin{vmatrix} 11 & 2\\ 6 & 3 \end{vmatrix}$	$\mathbf{G} \begin{vmatrix} 2 & 3 \\ 3 & -5 \end{vmatrix}$	$\mathbf{H} \begin{vmatrix} 2 & 11 \\ 3 & 6 \end{vmatrix}$	$\mathbf{J} \begin{vmatrix} 11 & 3 \\ 6 & -5 \end{vmatrix}$	19
	uld be used to solve the r	matrix equation $\begin{bmatrix} 4 & 6 \\ 0 & 1 \end{bmatrix}$.	$\binom{m}{n} = \binom{4}{0}$ by using	
inverse matrices? $\mathbf{A} \begin{bmatrix} 4 & 6 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \end{bmatrix}$	$\mathbf{B} \frac{1}{4} \begin{bmatrix} 1 & -6 \\ 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \end{bmatrix}$	$\mathbf{C} \frac{1}{4} \begin{bmatrix} 4 & 6 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \end{bmatrix}$	$\mathbf{D} \mathrel{4} \begin{bmatrix} 1 & -6 \\ 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \end{bmatrix}$	20
Bonus Find the value of	of $\begin{vmatrix} 0 & 1 & 0 \\ a & b & c \\ c & a & b \end{vmatrix}$.			B:

Glencoe Algebra 1