\qquad
\qquad
\qquad

Chapter 3 Test, Form 1

\qquad

Write the letter for the correct answer in the blank at the right of each question.

1. A system of linear equations may not have
A exactly one solution.
C infinitely many solutions.
B no solution.
D exactly two solutions.
2. \qquad
Choose the correct description of each system of equations.
\mathbf{F} consistent and independent $\quad \mathbf{H}$ consistent and dependent \mathbf{G} inconsistent J inconsistent and dependent
3. \qquad
4. $4 x-2 y=-6$
$2 x-y=8$

$$
\text { 3. } \begin{aligned}
3 x+y & =3 \\
x-2 y & =4
\end{aligned}
$$

3. \qquad
4. Which system of equations is graphed
A $y-\frac{1}{3} x=0$
C $y-3 x=0$
$x-y=-2$
$x-y=2$
B $y-3 x=0$
$x-y=-2$
D $y-\frac{1}{3} x=0$
$x-y=2$
$x-y=2$

5. Which system of inequalities is graphed?
F $y>-1$
H $y>-1$
$y \geq-x+1$
$y \leq-x+1$
G $y \geq-1$
J $y>-1$
$y<-x+1$

6. \qquad
7. \qquad

Use the system of inequalities $y \geq 0, x \geq 0$, and $y \leq-2 x+4$.
6. Find the coordinates of the vertices of the feasible region.
A $(0,0),(-2,0),(0,-4)$
C (0, 0), (4, 0), (0, 2)
B $(0,0),(2,0),(0,4)$
D (0, 0), (-4, 0), (0, 2)
6. \qquad
7. Find the minimum value of $f(x, y)=3 x+y$ for the feasible region.
F 6
G 4
H2
J 0
8. Find the maximum value of $f(x, y)=3 x+y$ for the feasible region.
A 2
B 4
C 6
D 12
9. What is the value of y in the
solution of the system of equations?

$$
\begin{aligned}
& 2 x+y+z=1 \\
& 2 x-y-3 z=-3 \\
& x-2 y-4 z=-2
\end{aligned}
$$

F-10
G-8
H 2
J 5
10. The 300 students at Holmes School work a total of 5000 hours each month. Each student in group A works 10 hours, each in group B works 15 hours, and each in group C works 20 hours each month. There are twice as many students in group B as in group A . Which equation would not be included in the system used to solve this problem?
A $A=2 B$
C $A+B+C=300$
B $10 A+15 B+20 C=5000$
D $B=2 A$
10.
9.

7.
 \qquad

8. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 3 Test, Form 1 (continued)

For Questions 11-15, use the matrices to find the following.
$\boldsymbol{P}=\left[\begin{array}{ll}4 & 1 \\ 2 & 0\end{array}\right] \quad \boldsymbol{Q}=\left[\begin{array}{ll}1 & 6 \\ 0 & 2\end{array}\right] \quad \boldsymbol{R}=\left[\begin{array}{cc}0 & \frac{1}{2} \\ 1 & -2\end{array}\right] \quad \boldsymbol{S}=\left[\begin{array}{ccc}6 & -4 & 9 \\ 3 & -1 & -5\end{array}\right]$
11. the first row of $4 S$
F $\left[\begin{array}{lll}-2 & 8 & -5\end{array}\right]$
G $\left[\begin{array}{lll}12 & -4 & -20\end{array}\right]$
H [24-16 36]
J not possible
11.
12. the first row of $2 P+2 R$
A [8 3]
B [4 3]
C [6 - 4]
D not possible
12. \qquad
13. the first row of $S P$
F [12-4-20]
G [-23 21$]$
H [$53-27]$
J not possible
14. the inverse of matrix R
A P
B Q
C T
D not possible
15. the determinant of Q
F 8
G 4
H 2
J-2
16. Find the value of $\left|\begin{array}{ll}5 & 1 \\ 3 & 2\end{array}\right|$.
A 13
C 17
D 3
16. \qquad
17. Which expression is true for all matrices $X_{2 \times 2}, Y_{2 \times 2}$, and scalars c ?
$\mathbf{F} c(X+Y)=(Y+X) c$
H $X Y=Y X$
G $c(X Y)=(Y X) c$
$\mathbf{J} c(X Y)=c(X) c(Y)$
17. \qquad
18. Evaluate $\left|\begin{array}{ccc}2 & 0 & 1 \\ 3 & 1 & 2 \\ 1 & -2 & 5\end{array}\right|$ using diagonals.
A - 2
B 7
C 11
D -1
18.
19. Cramer's Rule is used to solve the system of equations $2 m+3 n=11$ and $3 m-5 n=6$. Which determinant represents the numerator for m ?
F $\left|\begin{array}{cc}11 & 2 \\ 6 & 3\end{array}\right|$
$\mathbf{G}\left|\begin{array}{cc}2 & 3 \\ 3 & -5\end{array}\right|$
$\mathbf{H}\left|\begin{array}{cc}2 & 11 \\ 3 & 6\end{array}\right|$
$\mathbf{J}\left|\begin{array}{cc}11 & 3 \\ 6 & -5\end{array}\right|$
19. \qquad
20. Which product would be used to solve the matrix equation $\left[\begin{array}{ll}4 & 6 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}m \\ n\end{array}\right]=\left[\begin{array}{l}4 \\ 0\end{array}\right]$ by using inverse matrices?
$\mathbf{A}\left[\begin{array}{ll}4 & 6 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}4 \\ 0\end{array}\right]$
$\mathbf{B} \frac{\mathbf{1}}{4}\left[\begin{array}{cc}1 & -6 \\ 0 & 4\end{array}\right] \cdot\left[\begin{array}{l}4 \\ 0\end{array}\right]$
$\mathbf{C} \frac{\mathbf{1}}{\mathbf{4}}\left[\begin{array}{ll}4 & 6 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}4 \\ 0\end{array}\right]$
D $4\left[\begin{array}{cc}1 & -6 \\ 0 & 4\end{array}\right] \cdot\left[\begin{array}{l}4 \\ 0\end{array}\right]$
20. \qquad

Bonus Find the value of $\left|\begin{array}{lll}0 & 1 & 0 \\ a & b & c \\ c & a & b\end{array}\right|$.

B: \qquad

