\qquad
\qquad

4-4 Complex Numbers

What You'll Learn

Active Vocabulary

square root property
complex conjugates
imaginary unit
pure imaginary number
complex number

Skim the lesson. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

New Vocabulary Place each number in a box. All numbers should be used once: $-4,0,5, \frac{1}{2}, \pi, \sqrt{2}, 0.5$. (Lesson 1-2)

Real Numbers

Vocabulary Link Match the term with its definition by drawing a line to connect the two.
square root of a negative real number
\boldsymbol{i}, which is defined as $\boldsymbol{i}^{2}=-1$
a property which says that if $x^{2}=a$, then $x= \pm \sqrt{a}$
any number which can be written in the form $a+b i$, where a and b are real numbers and \boldsymbol{i} is the imaginary unit two complex numbers of the form $a+b \boldsymbol{i}$ and $a-b \boldsymbol{i}$
\qquad
\qquad

Main Idea

Pure Imaginary Numbers

Operations with Complex Numbers

Details

Simplify the expression by completing each empty box.

Write each listed number under each category that applies.
$-7,12 i, 3+4 i, \sqrt{-12}, 0,2+i, i^{5}, \sqrt{5}, \frac{2}{3}, \frac{1}{2}+\frac{3}{2} i,-\frac{1}{3} i$

Complex	Real	Imaginary

Helping You Remember

How can you use what you know about the factors of a polynomial that is a difference of two squares to help you remember how to simplify fractions with imaginary numbers in the denominator?
\qquad

