2-5 Study Guide and Intervention Postulates and Paragraph Proofs

Points, Lines, and Planes In geometry, a **postulate** is a statement that is accepted as true. Postulates describe fundamental relationships in geometry.

Postulate 2.1: Through any two points, there is exactly one line. **Postulate 2.2:** Through any three noncollinear points, there is exactly one plane. Postulate 2.3: A line contains at least two points. Postulate 2.4: A plane contains at least three noncollinear points. **Postulate 2.5:** If two points lie in a plane, then the entire line containing those points lies in the plane. **Postulate 2.6:** If two lines intersect, then their intersection is exactly one point. Postulate 2.7: If two planes intersect, then their intersection is a line.

Example: Determine whether each statement is *always, sometimes, or never true.*

a. There is exactly one plane that contains points A, B, and C.

Sometimes; if A, B, and C are collinear, they are contained in many planes. If they are noncollinear, then they are contained in exactly one plane.

- b. Points *E* and *F* are contained in exactly one line. Always; the first postulate states that there is exactly one line through any two points.
- c. Two lines intersect in two distinct points M and N. Never; the intersection of two lines is one point.

Exercises

Determine whether each statement is always, sometimes, or never true.

- **1.** A line contains exactly one point.
- 2. Noncollinear points *R*, *S*, and *T* are contained in exactly one plane.
- **3.** Any two lines ℓ and *m* intersect.
- **4.** If points G and H are contained in plane \mathcal{M} , then \overline{GH} is perpendicular to plane \mathcal{M} .
- **5.** Planes \mathcal{R} and \mathcal{S} intersect in point T.
- 6. If points A, B, and C are noncollinear, then segments \overline{AB} , \overline{BC} , and \overline{CA} are contained in exactly one plane.

In the figure, \overline{AC} and \overline{DE} are in plane Q and $\overline{AC} \parallel \overline{DE}$. State the postulate that can be used to show each statement is true.

- 7. Exactly one plane contains points F, B, and E.
- **8.** \overrightarrow{BE} lies in plane Q.

NAME

2-5 Study Guide and Intervention (continued) Postulates and Paragraph Proofs

Paragraph Proofs A logical argument that uses deductive reasoning to reach a valid conclusion is called a **proof**. In one type of proof, a **paragraph proof**, you write a paragraph to explain why a statement is true.

32

A statement that can be proved true is called a theorem. You can use undefined terms, definitions, postulates, and already-proved theorems to prove other statements true.

Example: In $\triangle ABC$, \overline{BD} is an angle bisector. Write a paragraph proof to show that $\angle ABD \cong \angle CBD$.

By definition, an angle bisector divides an angle into two congruent angles. Since \overline{BD} is an angle bisector, $\angle ABC$ is divided into two congruent angles. Thus, $\angle ABD \cong \angle CBD$.

Exercises

NAME

1. Given that $\angle A \cong \angle D$ and $\angle D \cong \angle E$, write a paragraph proof to show that $\angle A \cong \angle E$.

2. It is given that $\overline{BC} \cong \overline{EF}$, *M* is the midpoint of \overline{BC} , and *N* is the midpoint of \overline{EF} . Write a paragraph proof to show that BM = EN.

3. Given that S is the midpoint of \overline{QP} , T is the midpoint of \overline{PR} , and P is the midpoint of \overline{ST} , write a paragraph proof to show that QS = TR.

