\qquad

2-5 Study Guide and Intervention Postulates and Paragraph Proofs

Points, Lines, and Planes In geometry, a postulate is a statement that is accepted as true. Postulates describe fundamental relationships in geometry.

Postulate 2.1: Through any two points, there is exactly one line.
Postulate 2.2: Through any three noncollinear points, there is exactly one plane.
Postulate 2.3: A line contains at least two points.
Postulate 2.4: A plane contains at least three noncollinear points.
Postulate 2.5: If two points lie in a plane, then the entire line containing those points lies in the plane.
Postulate 2.6: If two lines intersect, then their intersection is exactly one point.
Postulate 2.7: If two planes intersect, then their intersection is a line.
Example: Determine whether each statement is always, sometimes, or never true.
a. There is exactly one plane that contains points A, B, and C.

Sometimes; if A, B, and C are collinear, they are contained in many planes. If they are noncollinear, then they are contained in exactly one plane.
b. Points E and F are contained in exactly one line.

Always; the first postulate states that there is exactly one line through any two points.
c. Two lines intersect in two distinct points M and N.

Never; the intersection of two lines is one point.

Exercises

Determine whether each statement is always, sometimes, or never true.

1. A line contains exactly one point.
2. Noncollinear points R, S, and T are contained in exactly one plane.
3. Any two lines ℓ and m intersect.
4. If points G and H are contained in plane \mathcal{M}, then $\overline{G H}$ is perpendicular to plane \mathcal{M}.
5. Planes \mathcal{R} and \mathcal{S} intersect in point T.
6. If points A, B, and C are noncollinear, then segments $\overline{A B}, \overline{B C}$, and $\overline{C A}$ are contained in exactly one plane.

In the figure, $\overline{A C}$ and $\overline{D E}$ are in plane Q and $\overline{A C} \| \overline{D E}$. State the postulate that can be used to show each statement is true.
7. Exactly one plane contains points F, B, and E.
8. $\overleftrightarrow{B E}$ lies in plane Q.

\qquad

2-5 Study Guide and Intervention ${ }_{\text {(continued) }}$ Postulates and Paragraph Proofs

Paragraph Proofs A logical argument that uses deductive reasoning to reach a valid conclusion is called a proof. In one type of proof, a paragraph proof, you write a paragraph to explain why a statement is true.

A statement that can be proved true is called a theorem. You can use undefined terms, definitions, postulates, and already-proved theorems to prove other statements true.

Example: In $\triangle A B C, \overline{B D}$ is an angle bisector. Write a paragraph proof to show that $\angle A B D \cong \angle C B D$.

By definition, an angle bisector divides an angle into two congruent angles. Since $\overline{B D}$ is an angle bisector, $\angle A B C$ is divided into two congruent angles. Thus, $\angle A B D \cong \angle C B D$.

Exercises

1. Given that $\angle A \cong \angle D$ and $\angle D \cong \angle E$, write a paragraph proof to show that $\angle A \cong \angle E$.
2. It is given that $\overline{B C} \cong \overline{E F}, M$ is the midpoint of $\overline{B C}$, and N is the midpoint of $\overline{E F}$. Write a paragraph proof to show that $B M=E N$.

3. Given that S is the midpoint of $\overline{Q P}, T$ is the midpoint of $\overline{P R}$, and P is the midpoint of $\overline{S T}$, write a paragraph proof to show that $Q S=T R$.

